Hybrid Training Method for Tied Mixture Density Hidden Markov Models Using Learning Vector Quantization and Viterbi Estimation

نویسنده

  • Mikko Kurimo
چکیده

In this work the output density functions of hidden Markov models are phoneme-wise tied mixture Gaussians. For training these tied mixture density HMMs, modiied versions of the Viterbi training and LVQ based corrective tuning are described. The initialization of the mean vectors of the mixture Gaussians is performed by rst composing small Self-Organizing Maps representing each phoneme and then combining them to a single large codebook to be trained by Learning Vector Quantization (LVQ). The experiments on the proposed training methods are accomplished using a speech recognition system for Finnish phoneme sequences. Comparing to the corresponding continuous density and semi-continuous HMMs in 9] and 8] in the respect of the number of parameters, the recognition time and the average error rate, the performance of the phoneme-wise tied mixture HMMs is superior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmental Lvq Training for Phoneme Wise Tied Mixture Density Hmms

This work presents training methods and recogni tion experiments for phoneme wise tied mixture den sities in hidden Markov models HMM The system trains speaker dependent but vocabulary independent phoneme models for the recognition of Finnish words The Learning Vector Quantization LVQ methods are applied to increase the discrimination between the phoneme models A segmental LVQ training is pro p...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Self-organization in mixture densities of HMM based speech recognition

In this paper experiments are presented to apply Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) for training mixture density hidden Markov models (HMMs) in automatic speech recognition. The decoding of spoken words into text is made using speaker dependent, but vocabulary and context independent phoneme HMMs. Each HMM has a set of states and the output density of each state is...

متن کامل

Training mixture density HMMs with SOM and LVQ

The objective of this paper is to present experiments and discussions of how some neural network algorithms can help the phoneme recognition with mixture density hidden Markov models (MDHMMs). In MDHMMs the modeling of the stochastic observation processes associated with the states is based on the estimation of the probability density function of the short-time observations in each state as a m...

متن کامل

Minimum Classification Error Training of Hidden Markov Models for Sequential Data in the Wavelet Domain

In the last years there has been increasing interest in developing discriminative training methods for hidden Markov models, with the aim to improve their performance in classification and pattern recognition tasks. Although several advances have been made in this area, they have been targeted almost exclusively to standard models whose conditional observations are given by a Gaussian mixture d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007